0 Form Factors for Quasi - particles in c = 1 Conformal Field Theory
نویسنده
چکیده
The non-Fermi liquid physics at the edge of fractional quantum Hall systems is described by specific chiral Conformal Field Theories with central charge c = 1. The charged quasi-particles in these theories have fractional charge and obey a form of fractional statistics. In this paper we study form factors, which are matrix elements of physical (conformal) operators, evaluated in a quasi-particle basis that is organized according to the rules of fractional exclusion statistics. Using the systematics of Jack polynomials, we derive selection rules for a special class of form factors. We argue that finite temperature Green’s functions can be evaluated via systematic form factor expansions, using form factors such as those computed in this paper and thermodynamic distribution functions for fractional exclusion statistics. We present a specific case study where we demonstrate that the form factor expansion shows a rapid convergence.
منابع مشابه
Spacetimes admitting quasi-conformal curvature tensor
The object of the present paper is to study spacetimes admitting quasi-conformal curvature tensor. At first we prove that a quasi-conformally flat spacetime is Einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying Einstein's field equation with cosmological constant is covariant constant. Next, we prove that if the perfect flui...
متن کاملQuasi Riemann surfaces
A quasi Riemann surface is defined to be a certain kind of complete metric space Q whose integral currents are analogous to the integral currents of a Riemann surface. In particular, they have properties sufficient to express Cauchy-Riemann equations on Q. The prototypes are the spaces D 0 (Σ)m of integral 0-currents of total mass m in a Riemann surface Σ (usually called the integral 0-cycles o...
متن کاملQuasi - Particles , Conformal Field Theory , and q - Series
We review recent results concerning the representation of conformal field theory characters in terms of fermionic quasi-particle excitations, and describe in detail their construction in the case of the integrable three-state Potts chain. These fermionic representations are q-series which are generalizations of the sums occurring in the Rogers-Ramanujan identities.
متن کاملExclusion Statistics in Conformal Field Theory and the Ucpf for Wzw Models
In this paper we further elaborate on the notion of fractional exclusion statistics, as introduced by Haldane, in two-dimensional conformal field theory, and its connection to the Universal Chiral Partition Function as defined by McCoy and collaborators. We will argue that in general, besides the pseudo-particles introduced recently by Guruswamy and Schoutens, one needs additional ‘null quasi-p...
متن کاملOperator Product Expansion in Logarithmic Conformal Field Theory
In logarithmic conformal field theory, primary fields come together with logarithmic partner fields on which the stress-energy tensor acts non-diagonally. Exploiting this fact and global conformal invariance of twoand three-point functions, operator product expansions of logarithmic operators in arbitrary rank logarithmic conformal field theory are investigated. Since the precise relationship b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008